13 research outputs found

    COLAB:A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

    Get PDF
    Funding: Partially funded by the UK EPSRC grants Discovery: Pattern Discovery and Program Shaping for Many-core Systems (EP/P020631/1) and ABC: Adaptive Brokerage for Cloud (EP/R010528/1); Royal Academy of Engineering under the Research Fellowship scheme.Increasingly prevalent asymmetric multicore processors (AMP) are necessary for delivering performance in the era of limited power budget and dark silicon. However, the software fails to use them efficiently. OS schedulers, in particular, handle asymmetry only under restricted scenarios. We have efficient symmetric schedulers, efficient asymmetric schedulers for single-threaded workloads, and efficient asymmetric schedulers for single program workloads. What we do not have is a scheduler that can handle all runtime factors affecting AMP for multi-threaded multi-programmed workloads. This paper introduces the first general purpose asymmetry-aware scheduler for multi-threaded multi-programmed workloads. It estimates the performance of each thread on each type of core and identifies communication patterns and bottleneck threads. The scheduler then makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor's time. We evaluate our approach using the GEM5 simulator on four distinct big.LITTLE configurations and 26 mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average depending on the hardware setup.Postprin

    Invalidate or Update? Revisiting Coherence for Tomorrow’s Cache Hierarchies

    Get PDF

    Farewell My Shared LLC! A Case for Private Die-Stacked DRAM Caches for Servers

    Get PDF

    POSTER : A collaborative multi-factor scheduler for asymmetric multicore processors

    No full text
    Asymmetric multicore processors (AMP) are necessary for extracting performance in an era of limited power budget and dark silicon. We have efficient symmetric schedulers, efficient asymmetric schedulers for single-threaded workloads, and efficient asymmetric schedulers for single program workloads. What we do not have is a scheduler that can handle all three factors affecting AMP scheduling: core affinity, thread criticality, and scheduling fairness. To address this problem, this paper introduces the first general purpose asymmetry-aware scheduler targeting multi-threaded multi-programmed workloads. It estimates the performance of each thread on each type of core and it identifies communication patterns and bottleneck threads. With this information, the scheduler makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor's time. We evaluated our approach on GEM5 through four distinct big.LITTLE configurations and multi-threaded multi-programmed workloads composed of PARSEC and SPLASH2 benchmarks. Compared against the Linux CFS scheduler and a state-of-the-art AMP-aware scheduler, we demonstrate performance gains of up to 25% and 5% to 15% on average depending on the hardware setup.Postprin

    Atomistic simulation toward real-scale microprocessor circuits

    No full text
    A highly efficient and novel atomistic simulation framework is first established for the thermal and mechanical behaviors of a whole microprocessor chip or its constituent functional modules, important for the performance and reliability of high-end microprocessor circuits. The largest simulated module contains about 55.3 thousand nano-transistors with around 107 billion atoms. Traditionally, the macroscopic continuous methods are difficult to treat nanoscale factors such as doping, thin dielectric layer, surface and interface in the nano-transistor devices, while the microscopic quantum mechanics method can only calculate one or several nano-transistors. This proposed simulation method realizes the integrated treatment of the above nanoscale factors and complex gate layout by coupling multiple interatomic potential models for different materials and designing efficient parallel algorithms, and bridges the mesoscale simulation gap between the aforementioned macroscopic and microscopic methods. The development provides the first atomic-scale simulation framework for predicting and modulating the thermal behavior of a microprocessor circuit or its functional module, which paves an exciting way to the atomic-resolution design of novel high-performance microprocessor chips in the post-Moore era

    Preclinical evaluation of the safety and effectiveness of a new bioartificial cornea

    No full text
    Cross-linking agents are frequently used to restore corneal properties after decellularization, and it is especially important to select an appropriate method to avoid excessive cross-linking. In addition, how to promote wound healing and how to improve scar formation require further investigation. To ensure the safety and efficacy of animal-derived products, we designed bioartificial corneas (BACs) according to the criteria for Class III medical devices. Our BACs do not require cross-linking agents and increase mechanical strength via self-cross-linking of aldehyde-modified hyaluronic acid (AHA) and carboxymethyl chitosan (CMC) on the surface of decellularized porcine corneas (DPCs). The results showed that the BACs had good biocompatibility and transparency, and the modification enhanced their antibacterial and anti-inflammatory properties in vitro. Preclinical animal studies showed that the BACs can rapidly regenerate the epithelium and restore vision within a month. After 3 months, the BACs were gradually filled with epithelial, stromal, and neuronal cells, and after 6 months, their transparency and histology were almost normal. In addition, side effects such as corneal neovascularization, conjunctival hyperemia, and ciliary body hyperemia rarely occur in vivo. Therefore, these BACs show promise for clinical application for the treatment of infectious corneal ulcers and as a temporary covering for corneal perforations to achieve the more time

    Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart

    No full text
    Cell therapy has been a promising strategy for cardiac repair after myocardial infarction (MI), but a poor ischemic environment and low cell delivery efficiency remain significant challenges. The spleen serves as a hematopoietic stem cell niche and secretes cardioprotective factors after MI, but it is unclear whether it could be used for human pluripotent stem cell (hiPSC) cultivation and provide a proper microenvironment for cell grafts against the ischemic environment. Herein, we developed a splenic extracellular matrix derived thermoresponsive hydrogel (SpGel). Proteomics analysis indicated that SpGel is enriched with proteins known to modulate the Wnt signaling pathway, cell-substrate adhesion, cardiac muscle contraction and oxidation-reduction processes. In vitro studies demonstrated that hiPSCs could be efficiently induced into endothelial cells (iECs) and cardiomyocytes (iCMs) with enhanced function on SpGel. The cytoprotective effect of SpGel on iECs/iCMs against oxidative stress damage was also proven. Furthermore, in vivo studies revealed that iEC/iCM-laden SpGel improved cardiac function and inhibited cardiac fibrosis of infarcted hearts by improving cell survival, revascularization and remuscularization. In conclusion, we successfully established a novel platform for the efficient generation and delivery of autologous cell grafts, which could be a promising clinical therapeutic strategy for cardiac repair and regeneration after MI

    Construction of an Aptamer–SiRNA Chimera-Modified Tissue-Engineered Blood Vessel for Cell-Type-Specific Capture and Delivery

    No full text
    The application of tissue-engineered blood vessels (TEBVs) is the main developmental direction of vascular replacement therapy. Due to few and/or dysfunctional endothelial progenitor cells (EPCs), it is difficult to successfully construct EPC capture TEBVs in diabetes. RNA has a potential application in cell protection and diabetes treatment, but poor specificity and low efficiency of RNA transfection <i>in vivo</i> limit the application of RNA. On the basis of an acellular vascular matrix, we propose an aptamer–siRNA chimera-modified TEBV that can maintain a satisfactory patency in diabetes. This TEBV consists of two parts, CD133-adenosine kinase (ADK) chimeras and a TEBV scaffold. Our results showed that CD133-ADK chimeras could selectively capture the CD133-positive cells <i>in vivo</i>, and then captured cells can internalize the bound chimeras to achieve RNA self-transfection. Subsequently, CD133-ADK chimeras were cut into ADK siRNA by a dicer, resulting in depletion of ADK. An ADK-deficient cell may act as a bioreactor that sustainably releases adenosine. To reduce nonspecific RNA transfection, we increased the proportion of HAuCl<sub>4</sub> during the material preparation, through which the transfection capacity of polyethylenimine (PEI)/polyethylene glycol (PEG)-capped gold nanoparticles (PEI/PEG-AuNPs) was significantly decreased and the ability of TEBV to resist tensile and liquid shear stress was greatly enhanced. PEG and 2′-<i>O</i>-methyl modification was used to enhance the <i>in vivo</i> stability of RNA chimeras. At day 30 postgrafting, the patency rate of CD133-ADK chimera-modified TEBVs reached 90% in diabetic rats and good endothelialization was observed

    Construction of Antithrombotic Tissue-Engineered Blood Vessel <i>via</i> Reduced Graphene Oxide Based Dual-Enzyme Biomimetic Cascade

    No full text
    Thrombosis is one of the biggest obstacles in the clinical application of small-diameter tissue-engineered blood vessels (TEBVs). The implantation of an unmodified TEBV will lead to platelet aggregation and further activation of the coagulation cascade, in which the high concentration of adenosine diphosphate (ADP) that is released by platelets plays an important role. Inspired by the phenomenon that endothelial cells continuously generate endogenous antiplatelet substances <i>via</i> enzymatic reactions, we designed a reduced graphene oxide (RGO) based dual-enzyme biomimetic cascade to successively convert ADP into adenosine monophosphate (AMP) and AMP into adenosine. We used RGO as a support and bound apyrase and 5′-nucleotidase (5′-NT) on the surface of RGO through covalent bonds, and then, we modified the surface of the collagen-coated decellularized vascular matrix with the RGO-enzyme complexes, in which RGO functions as a platform with a large open surface area and minimal diffusion barriers for substrates/products to integrate two catalytic systems for cascading reactions. The experimental results demonstrate that the two enzymes can synergistically catalyze procoagulant ADP into anticoagulant AMP and adenosine successively under physiological conditions, thus reducing the concentration of ADP. AMP and adenosine can weaken or even reverse the platelet aggregation induced by ADP, thereby inhibiting thrombosis. Adenosine can also accelerate the endothelialization of TEBVs by regulating cellular energy metabolism and optimizing the microenvironment, thus ensuring the antithrombotic function and patency of TEBVs even after the RGO-enzyme complex loses its activity
    corecore